NAUKA I BIZNES
- WSPÓŁPRACA SZANSĄ NA SUKCES
Poszukiwanie nowych rozwiązań w produkcji i oczyszczaniu inhibitora RNazy

FIRMA
Działalność firmy A&A Biotechnology koncentruje się na produkcji zaawansowanych narzędzi dla biologii molekularnej. W ofercie firmy znajduje się aktualnie około 200 produktów obejmujących m.in. zestawy do izolacji kwasów nukleinowych (DNA, RNA) z różnego rodzaju materiału biologicznego, odczynniki do reakcji PCR, Real-Time PCR, rekombinowane białka i enzymy lityczne. Wszystkie produkty firmy wprowadzone do oferty są wynikiem własnych prac badawczo-rozwojowych. Autorskie rozwiązania firmy z powodzeniem konkuruje z ofertą dużych koncernów z branży Life Sciences, odnosząc sukcesy również na największym rynku biotechnologicznym w USA. Firma oferuje ponadto pomoc w realizacji indywidualnych projektów badawczych. Oferta badawczo-naukowa firmy obejmuje m.in.: analizę HPLC/GC/HSCG, produkcję i oczyszczanie białek, klonowanie, sekwencjonowanie DNA, izolację DNA, badania populacyjne oraz diagnozykę molekularną.

NAUKOWIEC
Tematyka badawcza, którą się zajmuje, dotyczy roli białek opiekuńczych w ochronie polipeptydów przed denaturacją i agregacją oraz w procesach dezagracyacji i reaktywacji zdenaturowanych białek. Aktualnie realizuję projekt, który ma na celu lepsze zrozumienie mechanizmu działania białka opiekuńczego Hsp90, a w szczególności jego współpracę z białkiem Hsp70. Bialko Hsp90 budzi ogromne zainteresowanie jako cel terapii przeciwnowotworowej. Przyczyną tego jest fakt, iż pełni ono kluczową rolę w stabilizacji konformacji, dojrzewaniu i aktywacji wielu białek onkogennych, m.in. kinaz, receptorów hormonów steroidowych i czynników transkrypcyjnych. Moim modelem badawczym jest bakteryjne białko rodziny Hsp90. Wykazuje ono wysokie podobieństwo sekwencji aminokwasowej oraz struktury do ludzkiego Hsp90. Analiza aktywności Hsp90 i Hsp70 na prostszym modelu bakteryjnym mogłaby pomóc w lepszym zrozumieniu mechanizmu współdziałania tych białek w systemie eukariotycznym, a w dalszej perspektywie przyczynić się do opracowania innowacyjnej strategii leczenia nowotworów, opartej na hamowaniu aktywności obu tych białek.

Moje najbliższe plany naukowo-badawcze związane są z koleją z realizacją projektu o wysokim potencjale aplikacyjnym w przemyśle biotechnologicznym, w zakresie produkcji rekombinowanych białek. Heterologiczne białka są często podatne na nieprawidłowe fałdowanie i agregację podczas nadprodukcji w popularnym systemie bakteryjnym Escherichia coli. Stanowi to jeden z głównych problemów zmniejszających wydajność produkcji i izolacji aktywnych białek. W celu zapobiegania tym procesom stosuje się m.in. metody oparte na jednoczesnej produkcji białek opiekuńczych, przy czym procedury te nie są w pełni wydajne i wymagają udoskonaleń.

Planowane przez mnie podejście eksperymentalne obejmuje skonstruowanie zmutowanych wariantów białka opiekuńczego Hsp100, cechujących się wyższą aktywnością dezagracyjną w porównaniu z białkiem dzikiego typu, a następnie zbadanie, czy będą one skutecznym narzędziem do produkcji rekombinowanych białek w formie rozpuszczalnej.

INNOWACJA
Celem realizowanego przez mnie projektu stażowego było opracowanie innowacyjnych rozwiązań w metodzie produkcji i izolacji ssaczeego inhibitory RNazy. Białko to jest
powszechnie stosowane przez laboratoria pracujące z materiałem zawierającym RNA, w celu zapobiegania jego degradacji. W związku z tym firmy biotechnologiczne, w tym również firma A&A Biotechnology, są zainteresowane posiadaniem tego białka w swojej ofercie. Jednakże produkcja i oczyszczanie tego białka stanowi duże wyzwanie ze względu na jego podatność na agregację oraz wrażliwość na utlenianie. Aktualnie stosowane w przemyśle biotechnologicznym metody pozwalają uzyskać jedynie ograniczoną ilość tego białka w formie aktywnej. W ramach stażu, we współpracy z pracownikami firmy A&A Biotechnology, opracowałem bardziej wydajną metodę produkcji i izolacji aktywnego inhibitory Rnazy.

Jednym z zastosowanych przeze mnie podejść była metoda oparta na ko-ekspressji białek opiekuńczych. Określiłem optymalną kombinację białek opiekuńczych i warunki ich ekspresji dla wydajnej produkcji inhibitory Rnazy w formie rozpuszczalnej. Ponadto zoptymalizowałem warunki hodowli bakterii produkujących rekombinowane białko (m.in. warunki redukujące, temperatura hodowli) oraz wprowadziłem modyfikacje w procedurze jego izolacji, które umożliwiły uzyskanie większej ilości aktywnego białka. Opracowane w ramach stażu innowacyjne rozwiązania w zakresie produkcji i izolacji inhibitory Rnazy zostały wdrożone przez firmę A&A Biotechnology i enzym ten znajduje się aktualnie w jej ofercie sprzedaży.

WNIOSKI