

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

NAKODOWA STRATEGIA SPOJN	Społecznego	FUNDUSZ SPOŁECZNI * * *
Course title		ECTS code
Molecular biology of nucleic acids (lecture)		13.1.0555
Name of unit administrating study		
null		
Studies		
faculty field of study	type second tier	studies (MA)
Intercollegiate Faculty of Biotechnology	form full-time	Studies (Whi)
Biotechnology UG-MUG	specialty all	
	specialization all	
Teaching staff		
prof. dr hab. Igor Konieczny		
Forms of classes, the realization and num	ber of hours	ECTS credits
Forms of classes		3
Lecture		
The realization of activities		
classroom instruction		
Number of hours		
Lecture: 30 hours		
The academic cycle		
2021/2022 winter semester		
Type of course	Language of instr	uction
• •		
		of assessment and basic criteria for eveluation or
problem-focused lecture	examination requi	irements
p. 0.2.0	Final evaluation	
	Examination	
	Assessment meth	ods
	- written exam wi	ith open questions
	- written exam (to	•
		ong written answer/problem solving)
	The basic criteria	
	The following compone	
	and their significance i	student of the complex processes connected with nucleic acids in biotechnology
		ng issues of molecular biology of nucleic acids presented during
	lectures and currently	discussed in specialist literature
		n and specialist terminology allowing students to understand the
	discussed issues	
	The final grade will res	sult from the above elements. The student must obtain a passing
	grade for each of the n	
		rformed on the basis of an examination, where questions will
Make a afronifican experies describe	concern the above ele	ments
Method of verifying required learning out		

Required courses and introductory requirements

- A. Formal requirements
- B. Prerequisites

The learning outcomes for the basic courses Molecular Biology, Biochemistry and Genetics are required

Molecular biology of nucleic acids (lecture) #13.1.0555

Sylabusy - Centrum Informatyczne UG Dział Kształcenia

Aims of education

The aim of the course is to let students understand the molecular basis of metabolism of nucleic acids, acquire knowledge allowing to interpret and analyze the results of contemporary research concerning nucleic acids. Get acquainted with complex issues connected with the processes of transcription, repair, recombination, transposition, and the significance of these processes in biotechnology (K_W01)

Students will acquire knowledge concerning the newest research connected with the metabolism of nucleic acids (K_W03)

Students will perfect their English to the extent that will allow them to understand utterances and read, with understanding, scientific literature concerning molecular biology of nucleic acids (K_U03)

Course contents

History of research on metabolism of nucleic acids - key experiments

Notions of replicon and operon

DNA replication initiation in bacterial chromosomes and extrachromosomal genetic elements

DNA replication initiation in eukaryotic cells

Structure of Rep proteins

Helicases - structure, the role in the process of DNA replication

Primosom complex - synthesis of DNA replication starters

RNA and DNA dependent polymerases - structure, properties, molecular basis of the synthesis of nuclear acids

Structure of the E. coli Pol III holoenzyme complex

Mechanism of synthesis of leading and lagging strands in prokaryotic and eukaryotic cells

DNA repair - kinds of DNA repair, enzymes taking part in repair

Topology and dynamics of chromosomes and extrachromosomal genetic elements

Mobile genetic elements

Molecular basis of transposition process

Bibliography of literature

Genes VIII - by Benjamin Levin, Essential cell biology - by Bruce Alberts at all, Molecular Biology of the cell by Alberts at all.

The learning outcomes (for the field of study and specialization)

K_W01

K_W03

K_U03

Knowledge

K_W01 Understands complex biological phenomena on the molecular level, knows their significance for biotechnology and their relationships with other areas and disciplines of science

K_W03 Possesses knowledge in the field of selected issues currently discussed in biotechnological literature and problems concerning related scientific areas and disciplines significant for biotechnology

Skills

K_U03 Knows the English language to an extent that allows him/her to understand an utterance and read with understanding scientific literature and simple reviews in the fields of science and scientific disciplines connected with biotechnology; can prepare a short written review and an oral presentation in English, concerning particular issues of biotechnology and related scientific areas and disciplines.

Social competence

Contact

igor.konieczny@biotech.ug.edu.pl